PRODUCT DATA

Tygabolt[®] CSK Sleeve Anchor - Zinc Yellow Passivate

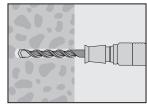
The **Tygabolt**[®] (Countersunk head) is a pre-assembled single unit wedgetype anchors used in solid concrete applications. Fixing is achieved by controlled torquing of the head which draws the cone section up in the sleeve, thereby expanding it outward and forcing the Tygabolt[®] against the sidewall of the pre-drilled hole.

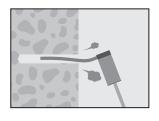
Applications

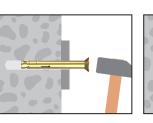
- Hand rail fastening
- Form-work support fastening
- Mechanical, electrical and pipe bracket fastening

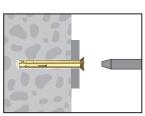
Material	8.8 ISO Property Class 8.8
Finish	ZYP Zinc Yellow Passivate

Part	QFind	Diam	Length	Drive Size	Pack Qty
		(mm)	(mm)	Phillips	
MTC88YM080060	MTC104	8.0	60	3	50
MTC88YM080085	MTC105	8.0	85	3	50
MTC88YM100075	MTC106	10.0	75	3	50
MTC88YM100100	MTC107	10.0	100	3	25
MTC88YM100120	MTC108	10.0	120	3	25

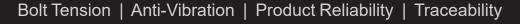



Phillips


Features


- Suitable for light to medium duty loads
- Quick and easy to install
- Immediate loading is possible
- Internally threaded countersunk head for flush finish
- Expansion claws that prevent rotation during tightening
- Cold formed cone for efficient expansion

Installation



Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

201127DS

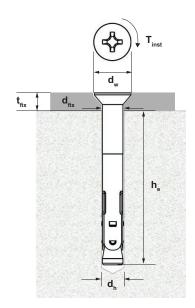
hobson.com.au QUALITY FASTENERS SINCE 1935

PRODUCT DATA

Tygabolt® CSK Sleeve Anchor - Zinc Yellow Passivate

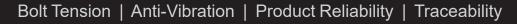
Installation Guide

Tygabolt® Size	Thread Size	Hole	Minimum Depth	Hole on Fixture	Torque Guide	Drive	Head Diameter	Minimum Concrete Thickness	Minimum Spacing	Minimum Edge Distance
d _h (mm)	D	d _h (mm)	h _{e min} (mm)	d _{fix} (mm)	T _{inst} (N-m)	Phillips	d _w (mm)	h _{min} (mm)	S _{min} (mm)	C _{min} (mm)
8	M6	8.0	40	10	8	#3	15	100	50	50
10	M8	10.0	50	12	25	#3	18	100	60	60


Basic Load Performance in 32 MPa non-cracked concrete

¹ *Design Resistance* is the governing minimum load resistance obtained by comparing relevant concrete and steel resistances. Strength reduction of $\phi = 0.60$ for concrete and $\phi = 0.80$ for steel are already included.

² *Working Load* is the governing minimum allowed load obtained by comparing relevant concrete and steel working loads. Factor of safety FOS = 2.5 for steel and FOS = 3.0 concrete are already included.


Size Embedment Depth		Design Tensile Resistance ¹	Working Load in Tension ²	
	h _。 (mm)	ø N _d (kN)	N _{wLL} (kN)	
	40	6.4	3.2	
ø8 (M6)	60	6.4	3.2	
	80	6.4	3.2	
ø10 (M8)	60	11.7	5.8	
	80	11.7	5.8	
	100	11.7	5.8	

Size	Embedment Depth	Edge Distance	Design Shear Resistance ¹	Working Load in Shear ²
	h _e (mm)	c ₁ (mm)	ø V _d (kN)	V _{wLL} (kN)
	50	50	3.2	1.6
ø8 (M6)		60	3.2	1.6
		80	3.2	1.6
ø10 (M8)	60	60	5.8	2.9
		80	5.8	2.9
		100	5.8	2.9

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

